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Abstract

Elliptic curves (EC) are smooth algebraic curves of abelian variety, which form a
commutative group using the multiplication operation. Elliptic curves may be defined
over a variety of fields, for example R, C, Q, finite fields, and others. Elliptic curve
cryptography (ECC) is a flavor of public-key cryptography based on elliptic curves over
finite fields. This paper provides an introduction to elliptic curves, the elliptic curve
digital signature algorithm (ECDSA), and the elliptic curve Diffie-Hellman (ECDH)
key agreement scheme. Descriptions of possible attack methods are briefly discussed
for EC- based cryptographic schemes. This paper provides an extensive description of a
PHP-OOP implementation of ECDSA, and ECDH, based on an implementation of EC
using two major multi-precision mathematics extensions (gmp and bcmath) available
to PHP.

1 Introduction

This paper describes an implementation of elliptic curves and two crypto-schemes based
on elliptic curves defined over finite fields of prime modulus in object oriented PHP (PHP-
OOP). The implementation leverages the object- oriented syntax of PHP to clearly delin-
eate collections of properties and operations on them. The two crypto schemes discussed
in this paper and implemented are the Digital Signature Algorithm (DSA), and the Diffie-
Hellman key agreement protocol(DH).

Both protocols rely on public-key cryptography which makes use of asymmetric key algo-
rithms. Asymmetric key algorithms rely on nontrivially related key pairs, a secret private
key and a public key. The DSA is a United States Federal Government Standard (FIPS)
for digital signatures. The DSA was proposed by the NIST in 1991 and adopted two years
later. In order to implement DSA, hashing and public-key cryptography are used. The
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Diffie-Hellman Key Agreement or Key Exchange protocol is a specific method of exchang-
ing keys and establishing a shared secret over an insecure communication infrastructure.
This scheme is one of the earliest practical example of cryptographic key exchange. This
protocol was invented and published in 1976 by Whitfield Diffie and Martin Hellman. This
key agreement protocol makes use of public key cryptography which relies on asymmetric
key algorithms. [Wade Trappe(2006)]

PHP is a language that is a popular choice for creating web applications, though it may be
used for command line script development. PHP was created in 1995, and is a loosely and
dynamically typed imperative language that borrows most of its syntax from C, or C++
in the case of object oriented programming. As of the writing of this paper PHP offers
two mainstream multi precision mathematics extensions: GMP and bcmath. GMP stands
for GNU Multiple Precision arithmetic library. This library is freely available under the
GNU general public license, and is optimized for performance. Bcmath received its name
from Binary Calculator which supports numbers of any size and precision, represented as
strings, this implementation is PHP- specific and does not rely on an underlying system
library. [Zandstra(2008)]

Section 2 of this paper provides an introduction to elliptic curves, by describing the op-
erations and related definitions along with a brief description of hashing functions. The
elliptic curve variation of public- key cryptography as it applies to DSA is described in
Section 3. Section 4 describes the Diffie-Hellman key agreement protocol using elliptic
curve asymmetric key algorithms. Implementation details of elliptic curves and the two
crypto schemes in PHP-OOP can be found in Section 5.

Due to their cryptographic strength and compactness of the key used for them in com-
parison to RSA, elliptic curves are naturally applicable to domains of technology where
quick computation and limited resources are available. Methods for establishing a secure
shared key and verifying authenticity using ECDSA and ECDH, as applied to the web
application domain are discussed in Section 6.

2 Elliptic Curves Over Finite Fields

Elliptic curves are smooth (continuously differentiable) curves of the form

y2 = x3 + ax+ b

In the real number system, the equation above may take two shapes depending on how
many real roots it has. Please refer to figures 1 and 2 for the graphs with one and three
roots. By the nature of elliptic curves we also include a point at ∞ (sometimes called O
for order of the curve). This point is usually placed at ±y because the bottom of the y
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axis is identified with the top.

Figure 1: y2 = x3 + 2x+ 7 has one root
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Figure 2: y2 = x(x+ 1)(x− 1) with three roots

There is one operation defined on elliptic curves: addition. Addition on elliptic curves
differs from adding points in the plane.
The law of addition on an elliptic curve is represented in Figure 3. [Washington(2003)]

Elliptic Curve Addition Law

Let an elliptic curve E be given by y2 = x3 + bx+ c and P1 = (x1, y1) and P2 = (x2, y2).

First, compute the slope of the tangent line m between P1 and P2 by:

m =

{
(y2 − y1)/(x2 − x1) if P1 6= P2

(3x21 + b)/(2y1) if P1 = P2

We find P1 + P2 = P3 = (x3, y3)

x3 = m2 − x1 − x2

y3 = m(x1 − x3)− y1
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Figure 3: P1 + P2 = P3

This addition law is associative and commutative, i.e.:

(P +Q) +R = P + (Q+R)

and
P +Q = Q+ P.

Integer multiplication is defined as:

kP = (P + P + . . .+ P )︸ ︷︷ ︸
k times

Additionally, elliptic curves hold identities:

P1 +∞ = P1

P1 +−P1 =∞

This means that ∞ is the additive identity. Thus, P +∞ = P .
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Elliptic curve cryptography is defined on fields with finitely many elements (finite fields)
(mod p) where p is a prime number, instead of being defined on R.

The computations above are still used, but division is replaced by finding the multiplicative
inverse of the divisor (mod p), that is a/b = a∗b−1 where b−1 is given by b∗b−1 = 1(mod p).
This requires that p be a prime number so that gcd(b, p) = 1.

An elliptic curve (mod n), where n is a prime number, contains approximately (n + 1)
points (that is n points + the additive identity ∞). [Darrel Hankerson(2004)]

A more precise estimate was given by H. Hasse in the 1930s.

Hasse’s theorem
Suppose E (mod p) has N points. Then

|N − p− 1| < 2
√

(p)

The advantage Elliptic Curves lend to cryptography is that there is no good way to attack
the elliptic curve analogous discrete logarithm problem. [Wade Trappe(2006)]

Discrete logarithm problem for elliptic curves
Suppose there exist two points P1 and P2 on a curve C and

P2 = kP1 = (P1 + P1 + . . .+ P1)︸ ︷︷ ︸
k times

.

The objective is to find a suitable k.

There is no good attack method for the discrete logarithm problem for elliptic curves and
other frequently used attack methods, such as the Pohlig-Hellman and Baby step Giant
Step attacks work in special situations only, the index calculus attack becomes meaningless
for the elliptic curve discrete logarithm problem.

Based on the cryptographically strong property of the discrete logarithm problem above,
elliptic curves are good candidates for applications in cryptography. Elliptic curves lend
themselves to well known and widely used algorithms in encryption schemes that use
public-key cryptography. Two examples are the Digital Signature Algorithm (DSA) and
various key agreement protocols such as the Diffie-Hellman key agreement protocol(DH).
[Wade Trappe(2006)]
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3 Digital Signature Algorithm and Elliptic Curves

As with any DSA algorithm, the Elliptic Curve Digital Signature Algorithm (ECDSA),
as any DSA algorithm consists of key generation, signing, and verification. The key
generation phase consists of two main phases. Phase 1 deals with choosing a hashing
function and establishing the parameters that are publicly shared, while the second phase
generates a public- private key pair. [I. Blake(1999)]

A cryptographic hash function is a function that takes any data and returns a fixed- size
piece of information. Usually, well described methods are used to digest an arbitrary bit
string. Hashing functions are commonly chosen to decrease the possibility of arriving at
the same fixed size hash from processing two pieces of data that are not initially identical.
A common class of deterministic functions for generating hashes are one-way trapdoor
functions. One- way trapdoor functions are desirable because, while it is computationally
trivial to generate a hash, once it is computed the message may only be verified by re-
applying the same function to the original piece of data. This is in most cases achieved by
optimizing the loss of information the data incurs while decreasing possible collisions. The
situation where the different pieces of input generate the same hash is called a collision.
A one-way function must have well documented properties in order to be called a crypto-
graphic hash function. One of these is collision resistance. [Wade Trappe(2006)] Currently
the most popular cryptographic hash functions belong in the SHA -1/256/224/512 family.
With the exception of SHA-1, the number postfix designates the output size the crypto-
graphic hashing function produces in bits, while SHA-1 produces 160 bit output. In the
DSA key generation phase, after choosing a good candidate for a cryptographic hash func-
tion, establishing the publicly shared pieces of information will make it possible to verify
the signature. When phase 1 is complete a public private key pair must be generated.
This is classically carried out by using public key cryptography. Public key cryptography
is also referred to as asymmetric key cryptography. Asymmetric key cryptography uses
two distinct keys, one for encrypting the data, and another for decrypting it. As opposed
to symmetric key cryptography the same key is used for both encryption and decryption.
The most notorious asymmetric key cryptographic algorithm is RSA. This section discusses
signature generation, signing and signature verification where elliptic curves are used to
generate a public-private key pair in a way that is analogous to DSA.

3.1 Signature Generation Algorithm

For Alice (A) to sign and send a message to Bob (B), they must agree upon the field size,
the parameters a and b that are the coefficients in y2 = x3 + ax+ b, and base (generator)
point G of prime order n. She also must choose dA such that dA ε [1, n− 1], and a public
key QA where QA = dAG. [Wade Trappe(2006)]
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Signature Generation Algorithm
In order to sign a message m, Alice follows the algorithm below:
1. Calculate e = HASH(m), where HASH(m) is an arbitrary cryptographically secure
hash function.
2. Let l0 be the leftmost bit of e.
3. Select a random integer k so that k ε [1, n− 1].
4. Calculate r = x1(mod n) where (x1, y1) = kG. If r = 0 go back to step 3.
5. Calculate s = k−1(l0 + rdA)(mod n) . If s = 0 go back to step 3.
6. The signature is (r, s).

Signature Verification Algorithm
In order for Bob (B) to successfully verify Alice’s signature he must have a copy of QA,
which is Alice’s public key. To verify the authenticity of QA before verifying the signature,
he may check three conditions:
1. QA 6= O where O is the identity element.
2. the curve contains QA.
3. nQA = O.

Now to verify the signature:
1. Verify that r, sεZ and r, sε[1, n− 1].
2. Calculate e = HASH(m), where the hash function is identical to the one Alice used.
3. Let l0 be the leftmost bit of e.
4. Calculate w = s−1(mod n).
5. Calculate u1 = l0w(mod n) and u2 = rw(mod n).
6. Calculate (x1, y1) = u1G+ u2QA.
7. The signature is valid if r = x1(mod n), invalid otherwise.

3.2 Correctness for ECDSA

Suppose a signature (r, s) on the message m is generated by Alice. Then it follows that
s = k−1(HASH(m) + dAr) (mod n). Thus

kG = s−1(HASH(m) + dAr)G (mod n)
= s−1HASH(m)G+ s−1rdAG (mod n)
= HASH(m)wG+ rwQ (mod n)
= u1G+ u2Q (mod n)
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Since u1G + u2Q = u1G + u2dAG = (u1 + u2dA)G = kG, this verifies x1 = r as required
by DSA.

The main difference of ECDSA from classical DSA is the use of a different asymmetric
key algorithm. Classically, the asymmetric key algorithm for signing and verification uses
the usual version of the discrete logarithm problem instead of EC version.

4 Diffie Hellman Key Agreement

The Diffie-Hellman key agreement protocol is a protocol that allows two parties, each
having a public-private key pair, to establish a shared secret over an untrusted or inse-
cure communication channel. For the Elliptic Curve Diffie-Hellman (ECDH) protocol, the
public-private key pairs consist of elliptic curves instead of the classical public key gener-
ation scheme using discrete logarithms. [Darrel Hankerson(2004)]

Key Establishment Protocol
In order for Alice and Bob to establish a shared key, the two parties must agree on the
domain parameters, p that defines the prime field, the coefficients a, b in y2 = x3 + ax+ b,
the generator point G, n ε Z such that nG = O, and the cofactor h.

� Alice picks dA randomly such that dA ε Z and dA ε [1, n− 1]
� Alice computes QA = dAG, publishes QA and keeps dA safe

Similarly

� Bob picks dB randomly such that dB ε Z and dB ε [1, n− 1]
� Alice computes QB = dBG, publishes QB and keeps dB safe

Alice computes
(xk, yk) = dAQB

Bob computes
(xk, yk) = dBQA

Alice and Bob’s shared key is xk.

dBQA = dAQB because dAQB = dAdBG = dBdAG = dBQA

The Diffie-Hellman key agreement protocol is secure, because only the public keys (QA,B)
are disclosed. Alice’s ability to derive Bob’s private key is analogous to solving the Elliptic
Curve Discreet Logarithm Problem.
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5 Elliptic Curve Cryptography PHP-OOP API

The PHP-OOP ECC library implementation consists of:
� interfaces
� implementing classes
� a test suite designed to test conformance to ECDSAVS 186, and to demonstrate usage
[Brassham(2004)]
� necessary utilities for computations
� index file taking care off class autoloading and initial environment setup in terms of
setting script timeout and allowed memory limits.

The PHP-OOP ECC API was implemented to use one of the two main PHP multi preci-
sion math librarary extensions: gmp and bcmath. The implementation is set to evaluate
which multi precision mathematics library is present and use the one present for ECC calcu-
lations for ECDSA and ECDH. If both gmp and bcmath are present, the implementation
favors gmp for performance reasons. For performance statistics and hardware descriptions,
please refer to Appendices A, B, C. For the source code please refer to Appendix D.

5.1 Elliptic Curve PHP Classes

Let us begin by enumerating the interfaces that the implemented source code adheres to.
The interfaces are:
• CurveFpInterface represents an elliptic curve and all operations on it in a prime field.
• PointInterface represents a point and all possible operations on it.
For the interface source code please refer to Appendix D.
The implementation of the interfaces listed above is in the classes directory at the same
level as the interface directory.
The files responsible for basic elliptic curve arithmetic and supporting operations are
CurveFp.php, Point.php, NumberTheory.php, gmp Utils.php, and bcmath Utils.php. The
methods in CurveFp.php, Point.php, NumberTheory.php contain source code implements
operations using both bcmath and gmp, or reports an exception if neither multi precision
mathematics library is present.

5.1.1 NumberTheory.php

This class encapsulates static methods that are concerned with computing number theoretic
algorithms. The most used static methods in this class are is prime(p), next prime(p), and
inverse mod(a, m). the method inverse mod is the most frequently used method and it is
also the most costly in the case of bcmath, as that library has no native implementation
for computing multiplicative inverses in a prime field. In the case of gmp, this operation
is supported in the extension’s API.
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5.1.2 gmp Utils.php

This class encapsulates static methods that are needed for elliptic curve arithmetic for the
implementation using the gmp library extension, namely modular arithmetic and pseudo-
random number generation. Note: The method gmp mod2 had to be constructed in
order to repair a bug with modular arithmetic in PHP’s gmp extension. This bug may be
architecture dependent.

5.1.3 bcmath Utils.php

This class encapsulates static methods that are needed for elliptic curve arithmetic for the
implementation using the bcmath library extension, namely random number generation,
bitwise operations, and number base conversions.

5.1.4 CurveFp.php

The CurveFp class represents an elliptic curve over a prime field. In addition to storing the
coefficients a,b and the base prime, this class verifies point containment on its instance using
the contains public function, and contains a static method for comparing two CurveFp
instances.

CurveFp->public function contains(x, y)

This method tests if the point (x,y) is contained on the curve of an instantiated CurveFp
object. The method uses the line

gmp_cmp

(

gmp_Utils::gmp_mod2

(

gmp_sub

(

gmp_pow(y, 2),

gmp_add

(

gmp_add

(

gmp_pow(x, 3),

gmp_mul(this->a, x)

),

this->b

)

),

11



this->prime

),

0)

which translates to the logical comparison

y2 − (x3 + ax+ b) == 0

which is derived from
y2 = x3 + ax+ b

If RHS = LHS, the current CurveFp object contains (x,y).

CurveFp::public static function cmp(CurveFp cp1, CurveFp cp2)

This static method compares cp1 and cp2 CurveFp instance variables to decide whether
cp1 is identical to cp2.

5.1.5 Point.php

The Point class encapsulates all operations on a point on an elliptic curve. A point refer-
ences a CurveFp object an (x,y) coordinate, and order associated with a point. Infinity is
represented using a static variable named infinity.

Point->public function __construct(CurveFp curve, x, y, order = null)

The Point constructor’s purpose is to check whether a point is contained on the curve that
the Point object was instantiated with, and check that the order multiplied by the point
results in the additive identity O if the order of a point was supplied.

Point->public static function cmp(x1, x2)

This static method’s purpose is to compare two points. Point equality means that both
x1 and x2 are of type Point; moreover, x1’s values match x2’s values along with their
CurveFp values as demonstrated below.

if ((x1->x == x2->x) && (x1->y == x2->y)

&& CurveFp::cmp(x1->curve, x2->curve))

{

return 0;

} else {

return 1;

}
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The three methods below are of key importance for elliptic curve arithmetic. By the
nature of elliptic curve arithmetic, integer multiplication of a point means

kP1 = (P1 + P1 + . . .+ P1)︸ ︷︷ ︸
k times

.

where k ε Z.
Elliptic curve multiplication takes place in mul using the double, add, and leftmost bit
static methods.

Point->public static function add(p1, p2)

add expects two point instances p1 and p2 as inputs.
p1 = (x1, y1), p2 = (x2, yx)

point addition algorithm
The algorithm below implements elliptic curve point addition where P1 6= P2

m = (y2 − y1)/(x2 − x1)

x3 = m2 − x1 − x2
y3 = m(x1 − x3)− y1

if (the curve for p1 matches the curve for p2) {

if (x1 = x2 mod p) {

//at this point the y values my either be identical or opposite in sign

if (y1=-y2 mod p) {

return infinity

} else {

//call double instead of add

return double

}

}

//if x1 != x2

p = p1->curve->getPrime();

//compute the slope according to the formula where P1 != P2

l = (p2->y - p1->y) * inverse_mod(p2->x - p1->x, p);

x3 = (l^2 - p1->x - p2->x) mod p;

y3 = (l * (p1->x - x3) - p1->y) mod p;
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p3 = new Point(x1->curve, x3, y3);

return p3;

} else {

//The Elliptic Curves do not match

}

Point->public static function double(Point x1)

double expects two point instances p1 and p2 as inputs.
p1 = (x1, y1), p2 = (x2, yx)

point doubling algorithm
The algorithm below implements elliptic curve point doubling i.e.(P1 = P2)

m = (3x21 + b)/(2y1)

x3 = m2 − x1 − x2
y3 = m(x1 − x3)− y1

//p is the curve’s prime base

//a is p1’s a coefficient

//l is the slope

inverse = inverse_mod((2 * p1->y), p);

three_x2 = 3 * ($p1->x^ 2);

l = ((three_x2 + a) * inverse) mod p;

x3 = ((l^2) - (2 * p1->x)) mod p;

y3 = ((l * (p1->x - x3)) - p1->y) mod p;

if (0 > y3)

y3 = p + y3;

p3 = new Point(p1->curve, x3, y3);

return p3;

Point->public static function mul(x2, Point x1)

The point multiplication algorithm
This is the classical double-and-add algorithm. The double-and-add method using k ∗ P
where k ε Z and P a point on an elliptic curve consists of decomposing k such that
k = k0 + 2k1 + 22k2 + . . .+ 2jkj . Classically, the double-and-add method may be described
as
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P a point

Q a point, the result of k*P

k element of Z

Q=P

for i from j to 0 do

Q = 2Q //double Q

if k_i = 1 then Q := Q+P

return Q

This algorithm is modified below to account for positive and negative y values during scalar
multiplication.

e = k;

if (cmp(p1, infinity) == 0) {

return infinity

}

if (p1->order != null) {

e = e mod p1->order

}

if (e == 0) {

return infinity

}

if (e > 0) {

e3 = 3 * e

negative_self = new Point(p1->curve, p1->x, - p1->y, p1->order)

i = leftmost_bit(e3) / 2

result = p1

while (i > 1) {

result = double(result)

if ( (e3 & i) != 0 && (e & i) == 0) {

result = add(result, p1)

}

if ((e3 & i) == 0 && (e & i) != 0) {

result = add(result, negative_self)

}

i = (i / 2)

}

}

return result

Point->public static function leftmost_bit(x)
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During each iteration in the scalar multiplication algorithm, this method is used to deter-
mine whether double, or double-and-add is performed.

if (x > 0) {

result = 1;

while (result <= x ) {

result = 2 * result;

}

return result/2;

}

5.2 Elliptic Curve Digital Signature Algorithm

• PrivateKeyInterface represents signature generation for ECDSA.
• PublicKeyInterface represents signature verification for ECDSA.
• SignatureInterface represents signature pair encapsulation for ECDSA.

5.2.1 PrivateKey.php

The PrivateKey class implements all necessary operations for signature generation. For a
reference on the ECDSA algorithm please refer to Section 2.

Constructor
A PrivateKey instance requires the PublicKey, which is a point on an elliptic curve, and a
secret (a randomly selected integer mod n).

ECDSA Message Signing
The algorithm of sign adheres to the one in Section 2. Upon successfully signing a hash a
new Signature object is returned.

public function sign(hash, random_k) {

G = this->public_key->getGenerator()

n = G->getOrder()

k = random_k mod n

p1 = Point::mul(k, G)

r = p1->getX()

if (r == 0) {

report error random number r = 0

}

s = mod((inverse_mod(k, n) * mod((hash + (this->secret_multiplier * r)), n)), n)
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if (s == 0) {

report error random number s = 0

}

return new Signature(r, s)

}

Hashing Function for the Message Digest Stage of ECDSA
ECDSA typically uses SHA1 for digesting a message, but other one-way functions may be
used.

public static function digest_integer(m) {

return string_to_int(hash(’sha1’, self::int_to_string(m)))

}

Checking point validity
Section 2.1 discusses checking point validity to determine the authenticity of the signature.
The algorithm implements the 3 conditions for authenticity checking.

public static function point_is_valid(Point generator, x, y) {

n = generator->getOrder();

curve = generator->getCurve();

if (x < 0 || n <= x || y < 0 || n < y <= 0)

return false

containment = curve->contains(x, y)

if (!containment)

return false

point = new Point(curve, x, y)

op = Point::mul(n, point)

if (!(Point::cmp(op, Point::infinity) == 0))

return false

return true

String to Integer Conversion
The helper functions below are necessary for message digestion. The purpose of the meth-
ods is to compute the integer representation of an ASCII string, and vice-versa. Please
refer to Appendix D for implementation.

public static function int_to_string(x)

public static function string_to_int(x)
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5.2.2 PublicKey.php

The PublicKey class implements all necessary operations for signature verification. For a
reference on the ECDSA algorithm please refer to Section 2.

Constructor
A PublicKey instance requires a generator point to access the order of the generator and
the public key which is a point on an elliptic curve.

ECDSA Message Verification
The algorithm of verifies adheres to the one in Section 2.1. Upon verification a boolean
value is returned based on the validity of the signature.

public function verifies(hash, Signature signature) {

G = this->generator;

n = this->generator->getOrder();

point = this->point;

r = signature->getR();

s =signature->getS();

if (r < 1|| r > (n - 1)))

return false

if (s < 1 || s > (n - 1))

return false

c = inverse_mod(s, n)

u1 = hash *c mod n

u2 = r * c mod n

xy = Point::add(Point::mul(u1, G), Point::mul(u2, point))

v = xy->getX() mod n

if (v == r)

return true

else

return false

5.2.3 Signature.php

The signature class serves as the encapsulation of the signature tuple (r, s). It is a PHP
object, containing r,s as private variables with publicly accessible setters and getters. This
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class is used to store the signature meaningfully while it is being passed between the
PublicKey and PrivateKey classes.

5.3 Elliptic Curve Diffie-Hellman Key Agreement

• EcDHInterface represents all operations involved in EcDH for dual key encryption along
with methods that utilize ECDH as a dual key encryption scheme, namely:

public function __construct(Point g);

public function calculateKey();

public function getPublicPoint();

public function setPublicPoint(Point q);

public function encrypt(string);

public function decrypt(string);

public function encryptFile(path);

public function decryptFile(path);

5.3.1 EcDH.php

The class has 5 instance variables:
� for storing the generator point
� for storing an object instance’s own public Point
� for storing a public point received from another object instance
� the private key associated with the current object instance
� the shared key as a product of successful key agreement using ECDH.
Interaction between Alice and Bob to establish a shared secret is of the form:

g = NISTcurve::generator_192();

Alice = new EcDH(g);

Bob = new EcDH(g);

//Alice and bob generate their private keys and public Point

pubPointA = Alice->getPublicPoint();

19



pubPointB = Bob->getPublicPoint();

//Alice sends Bob her public key and vice versa

Alice->setPublicPoint(pubPointB);

Bob->setPublicPoint(pubPointA);

//key_A == key_B

key_A = Alice->calculateKey();

key_B = Bob->calculateKey();

Description of Algorithms

public function __construct(Point g);

The constructor serves only to populate the generator point for ECDH.

public function getPublicPoint();

When called, this method generates a pseudo-random number ”secret” between 0 and
the order of the generator point. Upon successful generation it returns the public point
secret*Generator.

public function setPublicPoint(Point q);

This method is used to set a public point that was received from the person wishing to
establish secure communication through an untrusted channel.

public function calculateKey();

The calculateKey method’s purpose is to finally establish the shared secret. When both
parties call this method, they both arrive at the same key. Find the explanation of cor-
rectness behind ECDH in Section 3.

public function encrypt(string);

public function decrypt(string);

public function encryptFile(path);

public function decryptFile(path);
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The methods above are demonstrations of how a dual-key encryption scheme may be used
with the ECDH shared key agreement protocol. The first pair of methods may be used for
arbitrary strings. For hashing the x value of the generated shared secret, the implemen-
tations use SHA256. This hash is then fed into the 256 bit EAS encryption function in
CBC mode. The methods which operate on files are identical to the previous two, but are
designed to read in a file as the message to be communicated between Alice and Bob.
Note: The dual key encryption/decryption algorithm uses AES 256 for two way encryp-
tion. This may be substituted by other two way encryption functions as long as the function
used to encrypt the message is identical to the one used to decrypt the message.

5.4 Test Suite and Related Source Code

The PHP-OOP includes a Test Suite, along with a class encapsulating NIST published safe
curves at various key-lengths.

5.4.1 TestSuite.php

The TestSuite class may be run in verbose or non-verbose mode. It was written to
test the algorithms located in the NumberTheory class, to check NIST curve validity
checking according to (X9.62) [Brassham(2004)], Point Validity testing accoding to Ap-
pendix B.2.2 of [Brassham(2004)], signature validity testing according to Appendix B.2.4
of [Brassham(2004)], and perform a Diffie-Hellman Key Agreement Protocol test.

5.4.2 NISTCurve.php

The NISTCurve class is an encapsulation of static methods that contains all NIST published
elliptic curves that are approved as secure for elliptic curve cryptography. [NIST(2010a)]
[NIST(2010b)]

6 Uses for Elliptic Curve Cryptography

The fact that the discreet logarithm for elliptic curves problem is difficult to solve means
that cryptography based on elliptic curves is secure. As in any public key crypto system,
the private key should be kept secret or communicated through a secure channel, in order
to maintain the security asymmetric key cryptography provides.

The strength of crypto-schemes using elliptic curves are on par with RSA with the ad-
vantage that a smaller key may be used to achieve the same level of encryption strength
as RSA does. In elliptic curve cryptography, the key size used does not scale linearly with
cryptographic strength as in the case of RSA. For example, the EC key size equivalent
of 1024 bit RSA encryption is 160 bits, while doubling the key size of RSA to 2048 bits
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equates to increasing the key size to 224 bits using ECC. [NSA(2009)] This is beneficial in
terms of computation, data transmission, and in domains where space is a premium, such
as mobile devices, RFID tags, etc.

Elliptic Curve DSA is useful in applications in which other DSA algorithms were used
previously, with the added benefit of smaller key sizes. The uses for digital signatures
in general are in the areas of authentication and identity establishment, in message in-
tegrity verification and non-repudiation. In the area of authentication, digital signatures
are used to authenticate the source of the messages that initiate authentication requests.
[NSA(2009)] Digital Signatures may be used along with two-way encryption. This is de-
sirable because even though messages are encrypted between two parties, it is possible to
alter the encrypted representation of the message. By augmenting two way encryption
with digital signatures, it is possible to verify if the original message was altered. Another
important use for digital signatures is non-repudiation of origin, where an entity initially
signing a message is unable to later deny having signed the message. ECDSA lends smaller
key lengths to the use of DSA with higher level of security compared to RSA if identical
length keys are used.

The Diffie-Hellman key agreement protocol is used in everyday applied computer science
in TLS (Transport Layer Security) to provide perfect forward secrecy. TLS is a ubiquitous
method for perfect forward secrecy, appearing in the HTTPS protocol, as well as other
software, such as the OpenSSH project. [OpenBSD(2010)] Also, because PHP is mostly
a domain-specific language which focuses on the World Wide Web as its domain, having
an application level protocol enables developers to employ ECDH as a means to achieve
secure communication via an unsecured channel, without third party validation. The lack
of third party validation would make the same assumption that OpenSSH makes, namely
that the two parties identity is established at the first time of contact. In the case of secure
web services communication, the crypto scheme similar to OpenSSH may be used. The
advantage this provides to web service level communication is that the web services may
not have to communicate through HTTPS, but are able to achieve encrypted communica-
tion among them that is on par or exceeds the current mainstream RSA key lengths used
as HTTPS certificates.
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7 Appendix A: Hardware

The gmp and bcmath tests were run on the follwing hardware:

Processor Name:Intel Core 2 Duo

Processor Speed: 2.4 GHz

Number Of Processors: 1

Total Number Of Cores: 2

L2 Cache: 4 MB

Memory: 4 GB

Bus Speed: 800 MHz
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8 Appendix B: Test Suite Performance using GMP

--------- START NEXT PRIME TEST ---------

Next prime took: 0.0036690235137939 seconds.

--------- END NEXT PRIME TEST ---------

--------- START SQUARE ROOT MOD P TEST ---------

Square roots mod 31 took: 0.12426710128784 seconds.

--------- END SQUARE ROOT MOD P TEST ---------

--------- START MULTIPLICATIVE INVERSE MOD P TEST ---------

Multiplicative inverse mod arbitrary primes took: 1.1855871677399 seconds.

--------- END MULTIPLICATIVE INVERSE TEST ---------

--------- START ELLIPTIC CURVE ARITHMETIC TEST ---------

Elementary EC arithmetic took: 0.0085620880126953 seconds.

--------- END ELLIPTIC CURVE ARITHMETIC TEST ---------

--------- START NIST PUBLISHED CURVES TEST ---------

NIST curve validity checking (X9.62) took: 0.2227098941803 seconds.

--------- END NIST PUBLISHED CURVES TEST ---------

--------- START POINT VALIDITY TEST ---------

Point validity testing (ECDSAVS.pdf B.2.2) took: 0.19945812225342 seconds.

--------- END POINT VALIDITY TEST ---------

--------- START SIGNATURE VALIDITY TEST ---------

Signing and verification tests from ECDSAVS.pdf B.2.4 took: 3.7693610191345 seconds.
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--------- END SIGNATURE VALIDITY TEST ---------

--------- START DIFFIE HELLMAN KEY EXCHANGE TEST ---------

Diffie Hellman Dual Key Agreement encryption took: 0.31024312973022 seconds.

--------- END DIFFIE HELLMAN KEY EXHANGE TEST ---------

TEST SUITE TOTAL TIME : 5.8242769241333 seconds.
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9 Appendix C: Test Suite Performance using bcmath

--------- START NEXT PRIME TEST ---------

Next prime took: 0.17068219184875 seconds.

--------- END NEXT PRIME TEST ---------

--------- START SQUARE ROOT MOD P TEST ---------

Square roots mod 31 took: 0.014307022094727 seconds.

--------- END SQUARE ROOT MOD P TEST ---------

--------- START MULTIPLICATIVE INVERSE MOD P TEST ---------

Multiplicative inverse mod arbitrary primes took: 5.2367839813232 seconds.

--------- END MULTIPLICATIVE INVERSE TEST ---------

--------- START ELLIPTIC CURVE ARITHMETIC TEST ---------

Elementary EC arithmetic took: 0.22237086296082 seconds.

--------- END ELLIPTIC CURVE ARITHMETIC TEST ---------

--------- START NIST PUBLISHED CURVES TEST ---------

NIST curve validity checking (X9.62) took: 95.086047887802 seconds.

--------- END NIST PUBLISHED CURVES TEST ---------

--------- START POINT VALIDITY TEST ---------

Point validity testing (ECDSAVS.pdf B.2.2) took: 94.691728115082 seconds.

--------- END POINT VALIDITY TEST ---------

--------- START SIGNATURE VALIDITY TEST ---------

Signing and verification tests from ECDSAVS.pdf B.2.4 took: 1514.5250930786 seconds.
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--------- END SIGNATURE VALIDITY TEST ---------

--------- START DIFFIE HELLMAN KEY EXCHANGE TEST ---------

Diffie Hellman Dual Key Agreement encryption took: 80.673988103867 seconds.

--------- END DIFFIE HELLMAN KEY EXHANGE TEST ---------

TEST SUITE TOTAL TIME : 1790.6268291473 seconds.
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10 Appendix D: Source Code
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